博客
关于我
2019牛客网暑期多校赛第七场B题--Irreducible Polynomial--多项式可分解判别
阅读量:741 次
发布时间:2019-03-21

本文共 151 字,大约阅读时间需要 1 分钟。

判断多项式是否不可分解的关键在于其次数和二次项情况。具体规则如下:

  • 如果多项式的次数n大于2,则无法直接判断一定能分解,但根据问题描述,当n>2或n=2且判别式大于等于0时,可以确定多项式可分解。

  • 因此,编写程序时,当n≥2且判别式满足条件时,返回No;否则返回Yes。

  • 最终,代码实现了这个判断逻辑。

    转载地址:http://zyvgz.baihongyu.com/

    你可能感兴趣的文章
    node.js+react写的一个登录注册 demo测试
    查看>>
    Node.js中环境变量process.env详解
    查看>>
    Node.js卸载超详细步骤(附图文讲解)
    查看>>
    Node.js安装与配置指南:轻松启航您的JavaScript服务器之旅
    查看>>
    Node.js安装及环境配置之Windows篇
    查看>>
    Node.js安装和入门 - 2行代码让你能够启动一个Server
    查看>>
    node.js安装方法
    查看>>
    Node.js的循环与异步问题
    查看>>
    Node.js高级编程:用Javascript构建可伸缩应用(1)1.1 介绍和安装-安装Node
    查看>>
    NodeJS @kubernetes/client-node连接到kubernetes集群的方法
    查看>>
    Nodejs express 获取url参数,post参数的三种方式
    查看>>
    nodejs http小爬虫
    查看>>
    nodejs libararies
    查看>>
    nodejs npm常用命令
    查看>>
    NodeJS 导入导出模块的方法( 代码演示 )
    查看>>
    nodejs 的 Buffer 详解
    查看>>
    nodejs 读取xlsx文件内容
    查看>>
    nodejs 运行CMD命令
    查看>>
    nodejs-mime类型
    查看>>
    NodeJs——(11)控制权转移next
    查看>>